Github User Fetcher 1.0.0
C Application with Server and GUI
|
Go to the source code of this file.
Data Structures | |
struct | _GTypeClass |
struct | _GTypeInstance |
struct | _GTypeInterface |
struct | _GTypeQuery |
struct | _GTypeInfo |
struct | _GTypeFundamentalInfo |
struct | _GInterfaceInfo |
struct | _GTypeValueTable |
Enumerations | |
enum | GTypeDebugFlags { G_TYPE_DEBUG_NONE = 0 , G_TYPE_DEBUG_OBJECTS = 1 << 0 , G_TYPE_DEBUG_SIGNALS = 1 << 1 , G_TYPE_DEBUG_INSTANCE_COUNT = 1 << 2 , G_TYPE_DEBUG_MASK = 0x07 } |
enum | GTypeFundamentalFlags { G_TYPE_FLAG_CLASSED = (1 << 0) , G_TYPE_FLAG_INSTANTIATABLE = (1 << 1) , G_TYPE_FLAG_DERIVABLE = (1 << 2) , G_TYPE_FLAG_DEEP_DERIVABLE = (1 << 3) } |
enum | GTypeFlags { GOBJECT_AVAILABLE_ENUMERATOR_IN_2_74 = 0 , G_TYPE_FLAG_ABSTRACT = (1 << 4) , G_TYPE_FLAG_VALUE_ABSTRACT = (1 << 5) , GOBJECT_AVAILABLE_ENUMERATOR_IN_2_70 = (1 << 6) , GOBJECT_AVAILABLE_ENUMERATOR_IN_2_76 = (1 << 7) } |
Variables | |
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef void(* | GTypeValueInitFunc )(GValue *value) |
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef void(* | GTypeValueFreeFunc )(GValue *value) |
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef void(* | GTypeValueCopyFunc )(const GValue *src_value, GValue *dest_value) |
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef gpointer(* | GTypeValuePeekPointerFunc )(const GValue *value) |
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef gchar *(* | GTypeValueCollectFunc )(GValue *value, guint n_collect_values, GTypeCValue *collect_values, guint collect_flags) |
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef gchar *(* | GTypeValueLCopyFunc )(const GValue *value, guint n_collect_values, GTypeCValue *collect_values, guint collect_flags) |
#define _G_DEFINE_BOXED_TYPE_BEGIN | ( | TypeName, | |
type_name, | |||
copy_func, | |||
free_func ) |
Definition at line 2506 of file gtype.h.
#define _G_DEFINE_INTERFACE_EXTENDED_BEGIN | ( | TypeName, | |
type_name, | |||
TYPE_PREREQ ) |
Definition at line 2342 of file gtype.h.
#define _G_DEFINE_INTERFACE_EXTENDED_END | ( | ) |
Definition at line 2363 of file gtype.h.
#define _G_DEFINE_POINTER_TYPE_BEGIN | ( | TypeName, | |
type_name ) |
Definition at line 2559 of file gtype.h.
#define _G_DEFINE_TYPE_EXTENDED_BEGIN | ( | TypeName, | |
type_name, | |||
TYPE_PARENT, | |||
flags ) |
Definition at line 2336 of file gtype.h.
#define _G_DEFINE_TYPE_EXTENDED_BEGIN_PRE | ( | TypeName, | |
type_name ) |
Definition at line 2281 of file gtype.h.
#define _G_DEFINE_TYPE_EXTENDED_BEGIN_REGISTER | ( | TypeName, | |
type_name, | |||
TYPE_PARENT, | |||
flags ) |
Definition at line 2305 of file gtype.h.
#define _G_DEFINE_TYPE_EXTENDED_CLASS_INIT | ( | TypeName, | |
type_name ) |
Definition at line 2252 of file gtype.h.
#define _G_DEFINE_TYPE_EXTENDED_END | ( | ) |
Definition at line 2327 of file gtype.h.
#define _G_TYPE_CCC | ( | cp, | |
gt, | |||
ct ) ((ct*) (void *) g_type_check_class_cast ((GTypeClass*) cp, gt)) |
#define _G_TYPE_CCT | ( | cp, | |
gt ) (g_type_check_class_is_a ((GTypeClass*) cp, gt)) |
#define _G_TYPE_CHI | ( | ip | ) | (g_type_check_instance ((GTypeInstance*) ip)) |
#define _G_TYPE_CHV | ( | vl | ) | (g_type_check_value ((GValue*) vl)) |
#define _G_TYPE_CIC | ( | ip, | |
gt, | |||
ct ) ((ct*) (void *) g_type_check_instance_cast ((GTypeInstance*) ip, gt)) |
#define _G_TYPE_CIFT | ( | ip, | |
ft ) (g_type_check_instance_is_fundamentally_a ((GTypeInstance*) ip, ft)) |
#define _G_TYPE_CIT | ( | ip, | |
gt ) (g_type_check_instance_is_a ((GTypeInstance*) ip, gt)) |
#define _G_TYPE_CVH | ( | vl, | |
gt ) (g_type_check_value_holds ((const GValue*) vl, gt)) |
#define _G_TYPE_IGC | ( | ip, | |
gt, | |||
ct ) ((ct*) (((GTypeInstance*) ip)->g_class)) |
#define _G_TYPE_IGI | ( | ip, | |
gt, | |||
ct ) ((ct*) g_type_interface_peek (((GTypeInstance*) ip)->g_class, gt)) |
#define _g_type_once_init_enter g_once_init_enter_pointer |
#define _g_type_once_init_leave g_once_init_leave_pointer |
#define G_ADD_PRIVATE | ( | TypeName | ) |
G_ADD_PRIVATE: @TypeName: the name of the type in CamelCase
A convenience macro to ease adding private data to instances of a new type in the @_C_ section of G_DEFINE_TYPE_WITH_CODE() or G_DEFINE_ABSTRACT_TYPE_WITH_CODE().
For instance:
|[ typedef struct _MyObject MyObject; typedef struct _MyObjectClass MyObjectClass;
typedef struct { gint foo; gint bar; } MyObjectPrivate;
G_DEFINE_TYPE_WITH_CODE (MyObject, my_object, G_TYPE_OBJECT, G_ADD_PRIVATE (MyObject)) ]|
Will add MyObjectPrivate
as the private data to any instance of the MyObject
type.
G_DEFINE_TYPE_*
macros will automatically create a private function based on the arguments to this macro, which can be used to safely retrieve the private data from an instance of the type; for instance:
|[ gint my_object_get_foo (MyObject *obj) { MyObjectPrivate *priv = my_object_get_instance_private (obj);
g_return_val_if_fail (MY_IS_OBJECT (obj), 0);
return priv->foo; }
void my_object_set_bar (MyObject *obj, gint bar) { MyObjectPrivate *priv = my_object_get_instance_private (obj);
g_return_if_fail (MY_IS_OBJECT (obj));
if (priv->bar != bar) priv->bar = bar; } ]|
Since GLib 2.72, the returned MyObjectPrivate
pointer is guaranteed to be aligned to at least the alignment of the largest basic GLib type (typically this is guint64 or gdouble). If you need larger alignment for an element in the struct, you should allocate it on the heap (aligned), or arrange for your MyObjectPrivate
struct to be appropriately padded.
Note that this macro can only be used together with the G_DEFINE_TYPE_*
macros, since it depends on variable names from those macros.
Also note that private structs added with these macros must have a struct name of the form TypeNamePrivate
.
It is safe to call the _get_instance_private
function on NULL or invalid objects since it's only adding an offset to the instance pointer. In that case the returned pointer must not be dereferenced.
Since: 2.38
Definition at line 2188 of file gtype.h.
#define G_DECLARE_DERIVABLE_TYPE | ( | ModuleObjName, | |
module_obj_name, | |||
MODULE, | |||
OBJ_NAME, | |||
ParentName ) |
G_DECLARE_DERIVABLE_TYPE: @ModuleObjName: The name of the new type, in camel case (like GtkWidget
) @module_obj_name: The name of the new type in lowercase, with words separated by _
(like gtk_widget
) @MODULE: The name of the module, in all caps (like GTK
) @OBJ_NAME: The bare name of the type, in all caps (like WIDGET
) @ParentName: the name of the parent type, in camel case (like GtkWidget
)
A convenience macro for emitting the usual declarations in the header file for a type which is intended to be subclassed.
You might use it in a header as follows:
|[ #ifndef gtk_frobber_h #define gtk_frobber_h
#define GTK_TYPE_FROBBER gtk_frobber_get_type () GDK_AVAILABLE_IN_3_12 G_DECLARE_DERIVABLE_TYPE (GtkFrobber, gtk_frobber, GTK, FROBBER, GtkWidget)
struct _GtkFrobberClass { GtkWidgetClass parent_class;
void (* handle_frob) (GtkFrobber *frobber, guint n_frobs);
gpointer padding[12]; };
GtkWidget * gtk_frobber_new (void);
...
#endif ]|
Since the instance structure is public it is often needed to declare a private struct as follow in your C file:
|[ typedef struct _GtkFrobberPrivate GtkFrobberPrivate; struct _GtkFrobberPrivate { ... }; G_DEFINE_TYPE_WITH_PRIVATE (GtkFrobber, gtk_frobber, GTK_TYPE_WIDGET) ]|
This results in the following things happening:
gtk_frobber_get_type()
function is declared with a return type of GTypeGtkFrobber
struct is created with GtkWidget
as the first and only item. You are expected to use a private structure from your .c file to store your instance variables.GtkFrobberClass
type is defined as a typedef to struct _GtkFrobberClass
, which is left undefined. You should do this from the header file directly after you use the macro.GTK_FROBBER()
and GTK_FROBBER_CLASS()
casts are emitted as static inline
functions along with the GTK_IS_FROBBER()
and GTK_IS_FROBBER_CLASS()
type checking functions and GTK_FROBBER_GET_CLASS()
function.You can only use this function if your parent type also supports g_autoptr().
Because the type macro (GTK_TYPE_FROBBER
in the above example) is not a callable, you must continue to manually define this as a macro for yourself.
The declaration of the _get_type()
function is the first thing emitted by the macro. This allows this macro to be used in the usual way with export control and API versioning macros.
If you are writing a library, it is important to note that it is possible to convert a type from using G_DECLARE_FINAL_TYPE() to G_DECLARE_DERIVABLE_TYPE() without breaking API or ABI. As a precaution, you should therefore use G_DECLARE_FINAL_TYPE() until you are sure that it makes sense for your class to be subclassed. Once a class structure has been exposed it is not possible to change its size or remove or reorder items without breaking the API and/or ABI. If you want to declare your own class structure, use G_DECLARE_DERIVABLE_TYPE(). If you want to declare a class without exposing the class or instance structures, use G_DECLARE_FINAL_TYPE().
If you must use G_DECLARE_DERIVABLE_TYPE() you should be sure to include some padding at the bottom of your class structure to leave space for the addition of future virtual functions.
Since: 2.44
Definition at line 1705 of file gtype.h.
#define G_DECLARE_FINAL_TYPE | ( | ModuleObjName, | |
module_obj_name, | |||
MODULE, | |||
OBJ_NAME, | |||
ParentName ) |
G_DECLARE_FINAL_TYPE: @ModuleObjName: The name of the new type, in camel case (like GtkWidget
) @module_obj_name: The name of the new type in lowercase, with words separated by _
(like gtk_widget
) @MODULE: The name of the module, in all caps (like GTK
) @OBJ_NAME: The bare name of the type, in all caps (like WIDGET
) @ParentName: the name of the parent type, in camel case (like GtkWidget
)
A convenience macro for emitting the usual declarations in the header file for a type which is not (at the present time) intended to be subclassed.
You might use it in a header as follows:
|[ #ifndef myapp_window_h #define myapp_window_h
#include <gtk/gtk.h>
#define MY_APP_TYPE_WINDOW my_app_window_get_type () G_DECLARE_FINAL_TYPE (MyAppWindow, my_app_window, MY_APP, WINDOW, GtkWindow)
MyAppWindow * my_app_window_new (void);
...
#endif ]|
And use it as follow in your C file:
|[ struct _MyAppWindow { GtkWindow parent; ... }; G_DEFINE_TYPE (MyAppWindow, my_app_window, GTK_TYPE_WINDOW) ]|
This results in the following things happening:
my_app_window_get_type()
function is declared with a return type of GTypeMyAppWindow
type is defined as a typedef
of struct _MyAppWindow
. The struct itself is not defined and should be defined from the .c file before G_DEFINE_TYPE() is used.MY_APP_WINDOW()
cast is emitted as static inline
function along with the MY_APP_IS_WINDOW()
type checking functionMyAppWindowClass
type is defined as a struct containing GtkWindowClass
. This is done for the convenience of the person defining the type and should not be considered to be part of the ABI. In particular, without a firm declaration of the instance structure, it is not possible to subclass the type and therefore the fact that the size of the class structure is exposed is not a concern and it can be freely changed at any point in the future.You can only use this function if your parent type also supports g_autoptr().
Because the type macro (MY_APP_TYPE_WINDOW
in the above example) is not a callable, you must continue to manually define this as a macro for yourself.
The declaration of the _get_type()
function is the first thing emitted by the macro. This allows this macro to be used in the usual way with export control and API versioning macros.
If you want to declare your own class structure, use G_DECLARE_DERIVABLE_TYPE().
If you are writing a library, it is important to note that it is possible to convert a type from using G_DECLARE_FINAL_TYPE() to G_DECLARE_DERIVABLE_TYPE() without breaking API or ABI. As a precaution, you should therefore use G_DECLARE_FINAL_TYPE() until you are sure that it makes sense for your class to be subclassed. Once a class structure has been exposed it is not possible to change its size or remove or reorder items without breaking the API and/or ABI.
Since: 2.44
Definition at line 1602 of file gtype.h.
#define G_DECLARE_INTERFACE | ( | ModuleObjName, | |
module_obj_name, | |||
MODULE, | |||
OBJ_NAME, | |||
PrerequisiteName ) |
G_DECLARE_INTERFACE: @ModuleObjName: The name of the new type, in camel case (like GtkWidget
) @module_obj_name: The name of the new type in lowercase, with words separated by _
(like gtk_widget
) @MODULE: The name of the module, in all caps (like GTK
) @OBJ_NAME: The bare name of the type, in all caps (like WIDGET
) @PrerequisiteName: the name of the prerequisite type, in camel case (like GtkWidget
)
A convenience macro for emitting the usual declarations in the header file for a #GInterface type.
You might use it in a header as follows:
|[ #ifndef my_model_h #define my_model_h
#define MY_TYPE_MODEL my_model_get_type () GDK_AVAILABLE_IN_3_12 G_DECLARE_INTERFACE (MyModel, my_model, MY, MODEL, GObject)
struct _MyModelInterface { GTypeInterface g_iface;
gpointer (* get_item) (MyModel *model); };
gpointer my_model_get_item (MyModel *model);
...
#endif ]|
And use it as follow in your C file:
|[ G_DEFINE_INTERFACE (MyModel, my_model, G_TYPE_OBJECT);
static void my_model_default_init (MyModelInterface *iface) { ... } ]|
This results in the following things happening:
my_model_get_type()
function is declared with a return type of GTypeMyModelInterface
type is defined as a typedef to struct _MyModelInterface
, which is left undefined. You should do this from the header file directly after you use the macro.MY_MODEL()
cast is emitted as static inline
functions along with the MY_IS_MODEL()
type checking function and MY_MODEL_GET_IFACE()
function.You can only use this function if your prerequisite type also supports g_autoptr().
Because the type macro (MY_TYPE_MODEL
in the above example) is not a callable, you must continue to manually define this as a macro for yourself.
The declaration of the _get_type()
function is the first thing emitted by the macro. This allows this macro to be used in the usual way with export control and API versioning macros.
Since: 2.44
Definition at line 1797 of file gtype.h.
#define G_DEFINE_ABSTRACT_TYPE | ( | TN, | |
t_n, | |||
T_P ) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, G_TYPE_FLAG_ABSTRACT, {}) |
G_DEFINE_ABSTRACT_TYPE: @TN: The name of the new type, in Camel case. @t_n: The name of the new type, in lowercase, with words separated by _
. @T_P: The GType of the parent type.
A convenience macro for type implementations.
Similar to G_DEFINE_TYPE(), but defines an abstract type. See G_DEFINE_TYPE_EXTENDED() for an example.
Since: 2.4
#define G_DEFINE_ABSTRACT_TYPE_WITH_CODE | ( | TN, | |
t_n, | |||
T_P, | |||
_C_ ) _G_DEFINE_TYPE_EXTENDED_BEGIN (TN, t_n, T_P, G_TYPE_FLAG_ABSTRACT) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() |
G_DEFINE_ABSTRACT_TYPE_WITH_CODE: @TN: The name of the new type, in Camel case. @t_n: The name of the new type, in lowercase, with words separated by _
. @T_P: The GType of the parent type. @_C_: Custom code that gets inserted in the type_name_get_type()
function.
A convenience macro for type implementations.
Similar to G_DEFINE_TYPE_WITH_CODE(), but defines an abstract type and allows you to insert custom code into the *_get_type()
function, e.g. interface implementations via G_IMPLEMENT_INTERFACE().
See G_DEFINE_TYPE_EXTENDED() for an example.
Since: 2.4
#define G_DEFINE_ABSTRACT_TYPE_WITH_PRIVATE | ( | TN, | |
t_n, | |||
T_P ) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, G_TYPE_FLAG_ABSTRACT, G_ADD_PRIVATE (TN)) |
G_DEFINE_ABSTRACT_TYPE_WITH_PRIVATE: @TN: The name of the new type, in Camel case. @t_n: The name of the new type, in lowercase, with words separated by _
. @T_P: The GType of the parent type.
Similar to G_DEFINE_TYPE_WITH_PRIVATE(), but defines an abstract type.
See G_DEFINE_TYPE_EXTENDED() for an example.
Since: 2.38
#define G_DEFINE_BOXED_TYPE | ( | TypeName, | |
type_name, | |||
copy_func, | |||
free_func ) G_DEFINE_BOXED_TYPE_WITH_CODE (TypeName, type_name, copy_func, free_func, {}) |
G_DEFINE_BOXED_TYPE: @TypeName: The name of the new type, in Camel case @type_name: The name of the new type, in lowercase, with words separated by _
@copy_func: the GBoxedCopyFunc for the new type @free_func: the GBoxedFreeFunc for the new type
A convenience macro for defining a new custom boxed type.
Using this macro is the recommended way of defining new custom boxed types, over calling g_boxed_type_register_static() directly. It defines a type_name_get_type()
function which will return the newly defined GType, enabling lazy instantiation.
You might start by putting declarations in a header as follows:
|[ #define MY_TYPE_STRUCT my_struct_get_type () GType my_struct_get_type (void) G_GNUC_CONST;
MyStruct * my_struct_new (void); void my_struct_free (MyStruct *self); MyStruct * my_struct_copy (MyStruct *self); ]|
And then use this macro and define your implementation in the source file as follows:
|[ MyStruct * my_struct_new (void) { // ... your code to allocate a new MyStruct ... }
void my_struct_free (MyStruct *self) { // ... your code to free a MyStruct ... }
MyStruct * my_struct_copy (MyStruct *self) { // ... your code return a newly allocated copy of a MyStruct ... }
G_DEFINE_BOXED_TYPE (MyStruct, my_struct, my_struct_copy, my_struct_free)
void foo () { MyStruct *ms;
ms = my_struct_new (); // ... your code ... my_struct_free (ms); } ]|
Since: 2.26
#define G_DEFINE_BOXED_TYPE_WITH_CODE | ( | TypeName, | |
type_name, | |||
copy_func, | |||
free_func, | |||
_C_ ) _G_DEFINE_BOXED_TYPE_BEGIN (TypeName, type_name, copy_func, free_func) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() |
G_DEFINE_BOXED_TYPE_WITH_CODE: @TypeName: The name of the new type, in Camel case @type_name: The name of the new type, in lowercase, with words separated by _
@copy_func: the GBoxedCopyFunc for the new type @free_func: the GBoxedFreeFunc for the new type @_C_: Custom code that gets inserted in the *_get_type()
function
A convenience macro for boxed type implementations.
Similar to G_DEFINE_BOXED_TYPE(), but allows to insert custom code into the type_name_get_type()
function, e.g. to register value transformations with g_value_register_transform_func(), for instance:
|[ G_DEFINE_BOXED_TYPE_WITH_CODE (GdkRectangle, gdk_rectangle, gdk_rectangle_copy, gdk_rectangle_free, register_rectangle_transform_funcs (g_define_type_id)) ]|
Similarly to the G_DEFINE_TYPE_*
family of macros, the GType of the newly defined boxed type is exposed in the g_define_type_id
variable.
Since: 2.26
#define G_DEFINE_FINAL_TYPE | ( | TN, | |
t_n, | |||
T_P ) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, G_TYPE_FLAG_FINAL, {}) GOBJECT_AVAILABLE_MACRO_IN_2_70 |
G_DEFINE_FINAL_TYPE: @TN: the name of the new type, in Camel case @t_n: the name of the new type, in lower case, with words separated by _
(snake case) @T_P: the GType of the parent type
A convenience macro for type implementations.
Similar to G_DEFINE_TYPE(), but defines a final type.
See G_DEFINE_TYPE_EXTENDED() for an example.
Since: 2.70
#define G_DEFINE_FINAL_TYPE_WITH_CODE | ( | TN, | |
t_n, | |||
T_P, | |||
_C_ ) _G_DEFINE_TYPE_EXTENDED_BEGIN (TN, t_n, T_P, G_TYPE_FLAG_FINAL) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() GOBJECT_AVAILABLE_MACRO_IN_2_70 |
G_DEFINE_FINAL_TYPE_WITH_CODE: @TN: the name of the new type, in Camel case @t_n: the name of the new type, in lower case, with words separated by _
(snake case) @T_P: the GType of the parent type @_C_: Custom code that gets inserted in the type_name_get_type()
function.
A convenience macro for type implementations.
Similar to G_DEFINE_TYPE_WITH_CODE(), but defines a final type and allows you to insert custom code into the *_get_type()
function, e.g. interface implementations via G_IMPLEMENT_INTERFACE().
See G_DEFINE_TYPE_EXTENDED() for an example.
Since: 2.70
#define G_DEFINE_FINAL_TYPE_WITH_PRIVATE | ( | TN, | |
t_n, | |||
T_P ) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, G_TYPE_FLAG_FINAL, G_ADD_PRIVATE (TN)) GOBJECT_AVAILABLE_MACRO_IN_2_70 |
G_DEFINE_FINAL_TYPE_WITH_PRIVATE: @TN: the name of the new type, in Camel case @t_n: the name of the new type, in lower case, with words separated by _
(snake case) @T_P: the GType of the parent type
A convenience macro for type implementations.
Similar to G_DEFINE_TYPE_WITH_PRIVATE(), but defines a final type.
See G_DEFINE_TYPE_EXTENDED() for an example.
Since: 2.70
#define G_DEFINE_INTERFACE | ( | TN, | |
t_n, | |||
T_P ) G_DEFINE_INTERFACE_WITH_CODE(TN, t_n, T_P, ;) |
G_DEFINE_INTERFACE: @TN: The name of the new type, in Camel case. @t_n: The name of the new type, in lowercase, with words separated by _
. @T_P: The GType of the prerequisite type for the interface, or G_TYPE_INVALID for no prerequisite type.
A convenience macro for GTypeInterface definitions, which declares a default vtable initialization function and defines a *_get_type()
function.
The macro expects the interface initialization function to have the name t_n ## _default_init
, and the interface structure to have the name TN ## Interface
.
The initialization function has signature static void t_n ## _default_init (TypeName##Interface *klass);
, rather than the full GInterfaceInitFunc signature, for brevity and convenience. If you need to use an initialization function with an iface_data
argument, you must write the GTypeInterface definitions manually.
Since: 2.24
#define G_DEFINE_INTERFACE_WITH_CODE | ( | TN, | |
t_n, | |||
T_P, | |||
_C_ ) _G_DEFINE_INTERFACE_EXTENDED_BEGIN(TN, t_n, T_P) {_C_;} _G_DEFINE_INTERFACE_EXTENDED_END() |
G_DEFINE_INTERFACE_WITH_CODE: @TN: The name of the new type, in Camel case. @t_n: The name of the new type, in lowercase, with words separated by _
. @T_P: The GType of the prerequisite type for the interface, or G_TYPE_INVALID for no prerequisite type. @_C_: Custom code that gets inserted in the *_get_type()
function.
A convenience macro for GTypeInterface definitions.
Similar to G_DEFINE_INTERFACE(), but allows you to insert custom code into the *_get_type()
function, e.g. additional interface implementations via G_IMPLEMENT_INTERFACE(), or additional prerequisite types.
See G_DEFINE_TYPE_EXTENDED() for a similar example using G_DEFINE_TYPE_WITH_CODE().
Since: 2.24
#define G_DEFINE_POINTER_TYPE | ( | TypeName, | |
type_name ) G_DEFINE_POINTER_TYPE_WITH_CODE (TypeName, type_name, {}) |
G_DEFINE_POINTER_TYPE: @TypeName: The name of the new type, in Camel case @type_name: The name of the new type, in lowercase, with words separated by _
A convenience macro for pointer type implementations, which defines a type_name_get_type()
function registering the pointer type.
Since: 2.26
#define G_DEFINE_POINTER_TYPE_WITH_CODE | ( | TypeName, | |
type_name, | |||
_C_ ) _G_DEFINE_POINTER_TYPE_BEGIN (TypeName, type_name) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() |
G_DEFINE_POINTER_TYPE_WITH_CODE: @TypeName: The name of the new type, in Camel case @type_name: The name of the new type, in lowercase, with words separated by _
@_C_: Custom code that gets inserted in the *_get_type()
function
A convenience macro for pointer type implementations. Similar to G_DEFINE_POINTER_TYPE(), but allows to insert custom code into the type_name_get_type()
function.
Since: 2.26
#define G_DEFINE_TYPE | ( | TN, | |
t_n, | |||
T_P ) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, 0, {}) |
G_DEFINE_TYPE: @TN: The name of the new type, in Camel case. @t_n: The name of the new type, in lowercase, with words separated by _
. @T_P: The GType of the parent type.
A convenience macro for type implementations, which declares a class initialization function, an instance initialization function (see GTypeInfo for information about these) and a static variable named t_n_parent_class
pointing to the parent class. Furthermore, it defines a *_get_type()
function. See G_DEFINE_TYPE_EXTENDED() for an example.
Since: 2.4
#define G_DEFINE_TYPE_EXTENDED | ( | TN, | |
t_n, | |||
T_P, | |||
_f_, | |||
_C_ ) _G_DEFINE_TYPE_EXTENDED_BEGIN (TN, t_n, T_P, _f_) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() |
G_DEFINE_TYPE_EXTENDED: @TN: The name of the new type, in Camel case. @t_n: The name of the new type, in lowercase, with words separated by _
. @T_P: The GType of the parent type. @_f_: GTypeFlags to pass to g_type_register_static() @_C_: Custom code that gets inserted in the *_get_type()
function.
The most general convenience macro for type implementations, on which G_DEFINE_TYPE(), etc are based.
|[ G_DEFINE_TYPE_EXTENDED (GtkGadget, gtk_gadget, GTK_TYPE_WIDGET, 0, G_ADD_PRIVATE (GtkGadget) G_IMPLEMENT_INTERFACE (TYPE_GIZMO, gtk_gadget_gizmo_init)); ]|
expands to
|[ static void gtk_gadget_init (GtkGadget self); static void gtk_gadget_class_init (GtkGadgetClass *klass); static gpointer gtk_gadget_parent_class = NULL; static gint GtkGadget_private_offset; static void gtk_gadget_class_intern_init (gpointer klass) { gtk_gadget_parent_class = g_type_class_peek_parent (klass); if (GtkGadget_private_offset != 0) g_type_class_adjust_private_offset (klass, &GtkGadget_private_offset); gtk_gadget_class_init ((GtkGadgetClass) klass); } static inline gpointer gtk_gadget_get_instance_private (GtkGadget *self) { return (G_STRUCT_MEMBER_P (self, GtkGadget_private_offset)); }
GType gtk_gadget_get_type (void) { static GType static_g_define_type_id = 0; if (g_once_init_enter_pointer (&static_g_define_type_id)) { GType g_define_type_id = g_type_register_static_simple (GTK_TYPE_WIDGET, g_intern_static_string ("GtkGadget"), sizeof (GtkGadgetClass), (GClassInitFunc) gtk_gadget_class_intern_init, sizeof (GtkGadget), (GInstanceInitFunc) gtk_gadget_init, 0); { GtkGadget_private_offset = g_type_add_instance_private (g_define_type_id, sizeof (GtkGadgetPrivate)); } { const GInterfaceInfo g_implement_interface_info = { (GInterfaceInitFunc) gtk_gadget_gizmo_init }; g_type_add_interface_static (g_define_type_id, TYPE_GIZMO, &g_implement_interface_info); } g_once_init_leave_pointer (&static_g_define_type_id, g_define_type_id); } return static_g_define_type_id; } ]|
The only pieces which have to be manually provided are the definitions of the instance and class structure and the definitions of the instance and class init functions.
Since: 2.4
#define G_DEFINE_TYPE_WITH_CODE | ( | TN, | |
t_n, | |||
T_P, | |||
_C_ ) _G_DEFINE_TYPE_EXTENDED_BEGIN (TN, t_n, T_P, 0) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() |
G_DEFINE_TYPE_WITH_CODE: @TN: The name of the new type, in Camel case. @t_n: The name of the new type in lowercase, with words separated by _
. @T_P: The GType of the parent type. @_C_: Custom code that gets inserted in the *_get_type()
function.
A convenience macro for type implementations.
Similar to G_DEFINE_TYPE(), but allows you to insert custom code into the *_get_type()
function, e.g. interface implementations via G_IMPLEMENT_INTERFACE(). See G_DEFINE_TYPE_EXTENDED() for an example.
Since: 2.4
#define G_DEFINE_TYPE_WITH_PRIVATE | ( | TN, | |
t_n, | |||
T_P ) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, 0, G_ADD_PRIVATE (TN)) |
G_DEFINE_TYPE_WITH_PRIVATE: @TN: The name of the new type, in Camel case. @t_n: The name of the new type, in lowercase, with words separated by _
. @T_P: The GType of the parent type.
A convenience macro for type implementations, which declares a class initialization function, an instance initialization function (see GTypeInfo for information about these), a static variable named t_n_parent_class
pointing to the parent class, and adds private instance data to the type.
Furthermore, it defines a *_get_type()
function. See G_DEFINE_TYPE_EXTENDED() for an example.
Note that private structs added with this macros must have a struct name of the form TN ## Private
.
The private instance data can be retrieved using the automatically generated getter function t_n_get_instance_private()
.
See also: G_ADD_PRIVATE()
Since: 2.38
#define G_IMPLEMENT_INTERFACE | ( | TYPE_IFACE, | |
iface_init ) |
G_IMPLEMENT_INTERFACE: @TYPE_IFACE: The GType of the interface to add @iface_init: (type GInterfaceInitFunc): The interface init function, of type GInterfaceInitFunc
A convenience macro to ease interface addition in the _C_
section of G_DEFINE_TYPE_WITH_CODE() or G_DEFINE_ABSTRACT_TYPE_WITH_CODE(). See G_DEFINE_TYPE_EXTENDED() for an example.
Note that this macro can only be used together with the G_DEFINE_TYPE_*
macros, since it depends on variable names from those macros.
Since: 2.4
Definition at line 2109 of file gtype.h.
#define G_PRIVATE_FIELD | ( | TypeName, | |
inst, | |||
field_type, | |||
field_name ) G_STRUCT_MEMBER (field_type, inst, G_PRIVATE_OFFSET (TypeName, field_name)) |
G_PRIVATE_FIELD: @TypeName: the name of the type in CamelCase @inst: the instance of @TypeName you wish to access @field_type: the type of the field in the private data structure @field_name: the name of the field in the private data structure
Evaluates to the @field_name inside the @inst private data structure for @TypeName.
Note that this macro can only be used together with the G_DEFINE_TYPE_*
and G_ADD_PRIVATE() macros, since it depends on variable names from those macros.
Since: 2.38
Definition at line 2244 of file gtype.h.
#define G_PRIVATE_FIELD_P | ( | TypeName, | |
inst, | |||
field_name ) G_STRUCT_MEMBER_P (inst, G_PRIVATE_OFFSET (TypeName, field_name)) |
G_PRIVATE_FIELD_P: @TypeName: the name of the type in CamelCase @inst: the instance of @TypeName you wish to access @field_name: the name of the field in the private data structure
Evaluates to a pointer to the @field_name inside the @inst private data structure for @TypeName.
Note that this macro can only be used together with the G_DEFINE_TYPE_*
and G_ADD_PRIVATE() macros, since it depends on variable names from those macros.
Since: 2.38
Definition at line 2225 of file gtype.h.
#define G_PRIVATE_OFFSET | ( | TypeName, | |
field ) (TypeName##_private_offset + (G_STRUCT_OFFSET (TypeName##Private, field))) |
G_PRIVATE_OFFSET: @TypeName: the name of the type in CamelCase @field: the name of the field in the private data structure
Evaluates to the offset of the @field inside the instance private data structure for @TypeName.
Note that this macro can only be used together with the G_DEFINE_TYPE_*
and G_ADD_PRIVATE() macros, since it depends on variable names from those macros.
Since: 2.38
Definition at line 2207 of file gtype.h.
#define G_TYPE_BOOLEAN G_TYPE_MAKE_FUNDAMENTAL (5) |
#define G_TYPE_BOXED G_TYPE_MAKE_FUNDAMENTAL (18) |
#define G_TYPE_CHAR G_TYPE_MAKE_FUNDAMENTAL (3) |
#define G_TYPE_CHECK_CLASS_CAST | ( | g_class, | |
g_type, | |||
c_type ) (_G_TYPE_CCC ((g_class), (g_type), c_type)) |
G_TYPE_CHECK_CLASS_CAST: @g_class: Location of a GTypeClass structure @g_type: The type to be returned @c_type: The corresponding C type of class structure of @g_type
Checks that @g_class is a class structure of the type identified by @g_type and issues a warning if this is not the case. Returns @g_class casted to a pointer to @c_type. NULL is not a valid class structure.
This macro should only be used in type implementations.
#define G_TYPE_CHECK_CLASS_TYPE | ( | g_class, | |
g_type ) (_G_TYPE_CCT ((g_class), (g_type))) |
G_TYPE_CHECK_CLASS_TYPE: @g_class: (nullable): Location of a GTypeClass structure @g_type: The type to be checked
Checks if @g_class is a class structure of the type identified by @g_type. If @g_class is NULL, FALSE will be returned.
This macro should only be used in type implementations.
Returns: TRUE if @g_class is a class structure of @g_type
#define G_TYPE_CHECK_INSTANCE | ( | instance | ) | (_G_TYPE_CHI ((GTypeInstance*) (instance))) |
G_TYPE_CHECK_INSTANCE: @instance: Location of a GTypeInstance structure
Checks if @instance is a valid GTypeInstance structure, otherwise issues a warning and returns FALSE. NULL is not a valid GTypeInstance.
This macro should only be used in type implementations.
Returns: TRUE if @instance is valid
#define G_TYPE_CHECK_INSTANCE_CAST | ( | instance, | |
g_type, | |||
c_type ) (_G_TYPE_CIC ((instance), (g_type), c_type)) |
G_TYPE_CHECK_INSTANCE_CAST: @instance: (nullable): Location of a GTypeInstance structure @g_type: The type to be returned @c_type: The corresponding C type of @g_type
Checks that @instance is an instance of the type identified by @g_type and issues a warning if this is not the case. Returns @instance casted to a pointer to @c_type.
No warning will be issued if @instance is NULL, and NULL will be returned.
This macro should only be used in type implementations.
#define G_TYPE_CHECK_INSTANCE_FUNDAMENTAL_TYPE | ( | instance, | |
g_type ) (_G_TYPE_CIFT ((instance), (g_type))) |
G_TYPE_CHECK_INSTANCE_FUNDAMENTAL_TYPE: @instance: (nullable): Location of a GTypeInstance structure. @g_type: The fundamental type to be checked
Checks if @instance is an instance of the fundamental type identified by @g_type. If @instance is NULL, FALSE will be returned.
This macro should only be used in type implementations.
Returns: TRUE if @instance is an instance of @g_type
#define G_TYPE_CHECK_INSTANCE_TYPE | ( | instance, | |
g_type ) (_G_TYPE_CIT ((instance), (g_type))) |
G_TYPE_CHECK_INSTANCE_TYPE: @instance: (nullable): Location of a GTypeInstance structure. @g_type: The type to be checked
Checks if @instance is an instance of the type identified by @g_type. If @instance is NULL, FALSE will be returned.
This macro should only be used in type implementations.
Returns: TRUE if @instance is an instance of @g_type
#define G_TYPE_CHECK_VALUE | ( | value | ) | (_G_TYPE_CHV ((value))) |
#define G_TYPE_CHECK_VALUE_TYPE | ( | value, | |
g_type ) (_G_TYPE_CVH ((value), (g_type))) |
G_TYPE_CHECK_VALUE_TYPE: @value: a GValue @g_type: The type to be checked
Checks if @value has been initialized to hold values of type @g_type.
This macro should only be used in type implementations.
Returns: TRUE if @value has been initialized to hold values of type @g_type
#define G_TYPE_CLASS_GET_PRIVATE | ( | klass, | |
g_type, | |||
c_type ) ((c_type*) g_type_class_get_private ((GTypeClass*) (klass), (g_type))) |
G_TYPE_CLASS_GET_PRIVATE: @klass: the class of a type deriving from @private_type @g_type: the type identifying which private data to retrieve @c_type: The C type for the private structure
Gets the private class structure for a particular type.
The private structure must have been registered in the get_type() function with g_type_add_class_private().
This macro should only be used in type implementations.
Since: 2.24 Returns: (not nullable): a pointer to the private data structure
#define G_TYPE_DOUBLE G_TYPE_MAKE_FUNDAMENTAL (15) |
#define G_TYPE_ENUM G_TYPE_MAKE_FUNDAMENTAL (12) |
#define G_TYPE_FLAG_RESERVED_ID_BIT ((GType) (1 << 0)) |
#define G_TYPE_FLAGS G_TYPE_MAKE_FUNDAMENTAL (13) |
#define G_TYPE_FLOAT G_TYPE_MAKE_FUNDAMENTAL (14) |
#define G_TYPE_FROM_CLASS | ( | g_class | ) | (((GTypeClass*) (g_class))->g_type) |
#define G_TYPE_FROM_INSTANCE | ( | instance | ) | (G_TYPE_FROM_CLASS (((GTypeInstance*) (instance))->g_class)) |
G_TYPE_FROM_INSTANCE: @instance: Location of a valid GTypeInstance structure
Get the type identifier from a given @instance structure.
This macro should only be used in type implementations.
Returns: the GType
#define G_TYPE_FROM_INTERFACE | ( | g_iface | ) | (((GTypeInterface*) (g_iface))->g_type) |
#define G_TYPE_FUNDAMENTAL | ( | type | ) | (g_type_fundamental (type)) |
#define G_TYPE_FUNDAMENTAL_MAX (255 << G_TYPE_FUNDAMENTAL_SHIFT) |
#define G_TYPE_FUNDAMENTAL_SHIFT (2) |
#define G_TYPE_HAS_VALUE_TABLE | ( | type | ) | (g_type_value_table_peek (type) != NULL) |
G_TYPE_HAS_VALUE_TABLE: @type: A GType value
Checks if @type has a GTypeValueTable.
Returns: TRUE if @type has a value table
#define G_TYPE_INSTANCE_GET_CLASS | ( | instance, | |
g_type, | |||
c_type ) (_G_TYPE_IGC ((instance), (g_type), c_type)) |
G_TYPE_INSTANCE_GET_CLASS: @instance: Location of the GTypeInstance structure @g_type: The GType of the class to be returned @c_type: The C type of the class structure
Get the class structure of a given @instance, casted to a specified ancestor type @g_type of the instance.
Note that while calling a GInstanceInitFunc(), the class pointer gets modified, so it might not always return the expected pointer.
This macro should only be used in type implementations.
Returns: a pointer to the class structure
#define G_TYPE_INSTANCE_GET_INTERFACE | ( | instance, | |
g_type, | |||
c_type ) (_G_TYPE_IGI ((instance), (g_type), c_type)) |
G_TYPE_INSTANCE_GET_INTERFACE: @instance: Location of the GTypeInstance structure @g_type: The GType of the interface to be returned @c_type: The C type of the interface structure
Get the interface structure for interface @g_type of a given @instance.
This macro should only be used in type implementations.
Returns: a pointer to the interface structure
#define G_TYPE_INSTANCE_GET_PRIVATE | ( | instance, | |
g_type, | |||
c_type ) ((c_type*) g_type_instance_get_private ((GTypeInstance*) (instance), (g_type))) GOBJECT_DEPRECATED_MACRO_IN_2_58_FOR(G_ADD_PRIVATE) |
G_TYPE_INSTANCE_GET_PRIVATE: @instance: the instance of a type deriving from @private_type @g_type: the type identifying which private data to retrieve @c_type: The C type for the private structure
Gets the private structure for a particular type.
The private structure must have been registered in the class_init function with g_type_class_add_private().
This macro should only be used in type implementations.
Since: 2.4 Deprecated: 2.58: Use G_ADD_PRIVATE() and the generated your_type_get_instance_private()
function instead Returns: (not nullable): a pointer to the private data structure
#define G_TYPE_INT G_TYPE_MAKE_FUNDAMENTAL (6) |
#define G_TYPE_INT64 G_TYPE_MAKE_FUNDAMENTAL (10) |
#define G_TYPE_INTERFACE G_TYPE_MAKE_FUNDAMENTAL (2) |
#define G_TYPE_INVALID G_TYPE_MAKE_FUNDAMENTAL (0) |
#define G_TYPE_IS_ABSTRACT | ( | type | ) | (g_type_test_flags ((type), G_TYPE_FLAG_ABSTRACT)) |
#define G_TYPE_IS_CLASSED | ( | type | ) | (g_type_test_flags ((type), G_TYPE_FLAG_CLASSED)) |
G_TYPE_IS_CLASSED: @type: A GType value
Checks if @type is a classed type.
A classed type has an associated GTypeClass which can be derived to store class-wide virtual function pointers and data for all instances of the type. This allows for subclassing. All #GObjects are classed; none of the scalar fundamental types built into GLib are classed.
Interfaces are not classed: while their GTypeInterface struct could be considered similar to GTypeClass, and classes can derive interfaces, GTypeInterface doesn’t allow for subclassing.
Returns: TRUE if @type is classed
#define G_TYPE_IS_DEEP_DERIVABLE | ( | type | ) | (g_type_test_flags ((type), G_TYPE_FLAG_DEEP_DERIVABLE)) |
#define G_TYPE_IS_DEPRECATED | ( | type | ) | (g_type_test_flags ((type), G_TYPE_FLAG_DEPRECATED)) GOBJECT_AVAILABLE_MACRO_IN_2_76 |
#define G_TYPE_IS_DERIVABLE | ( | type | ) | (g_type_test_flags ((type), G_TYPE_FLAG_DERIVABLE)) |
#define G_TYPE_IS_DERIVED | ( | type | ) | ((type) > G_TYPE_FUNDAMENTAL_MAX) |
#define G_TYPE_IS_FINAL | ( | type | ) | (g_type_test_flags ((type), G_TYPE_FLAG_FINAL)) GOBJECT_AVAILABLE_MACRO_IN_2_70 |
#define G_TYPE_IS_FUNDAMENTAL | ( | type | ) | ((type) <= G_TYPE_FUNDAMENTAL_MAX) |
#define G_TYPE_IS_INSTANTIATABLE | ( | type | ) | (g_type_test_flags ((type), G_TYPE_FLAG_INSTANTIATABLE)) |
#define G_TYPE_IS_INTERFACE | ( | type | ) | (G_TYPE_FUNDAMENTAL (type) == G_TYPE_INTERFACE) |
G_TYPE_IS_INTERFACE: @type: A GType value
Checks if @type is an interface type.
An interface type provides a pure API, the implementation of which is provided by another type (which is then said to conform to the interface). GLib interfaces are somewhat analogous to Java interfaces and C++ classes containing only pure virtual functions, with the difference that GType interfaces are not derivable (but see g_type_interface_add_prerequisite() for an alternative).
Returns: TRUE if @type is an interface
#define G_TYPE_IS_VALUE_ABSTRACT | ( | type | ) | (g_type_test_flags ((type), G_TYPE_FLAG_VALUE_ABSTRACT)) |
G_TYPE_IS_VALUE_ABSTRACT: @type: A GType value
Checks if @type is an abstract value type. An abstract value type introduces a value table, but can't be used for g_value_init() and is normally used as an abstract base type for derived value types.
Returns: TRUE if @type is an abstract value type
#define G_TYPE_IS_VALUE_TYPE | ( | type | ) | (g_type_check_is_value_type (type)) |
G_TYPE_IS_VALUE_TYPE: @type: A GType value
Checks if @type is a value type and can be used with g_value_init().
Returns: TRUE if @type is a value type
#define G_TYPE_LONG G_TYPE_MAKE_FUNDAMENTAL (8) |
#define G_TYPE_MAKE_FUNDAMENTAL | ( | x | ) | ((GType) ((x) << G_TYPE_FUNDAMENTAL_SHIFT)) |
G_TYPE_MAKE_FUNDAMENTAL: @x: the fundamental type number.
Get the type ID for the fundamental type number @x.
Use g_type_fundamental_next() instead of this macro to create new fundamental types.
Returns: the GType
#define G_TYPE_NONE G_TYPE_MAKE_FUNDAMENTAL (1) |
#define G_TYPE_OBJECT G_TYPE_MAKE_FUNDAMENTAL (20) |
#define G_TYPE_PARAM G_TYPE_MAKE_FUNDAMENTAL (19) |
G_TYPE_PARAM:
The fundamental type from which all GParamSpec types are derived.
#define G_TYPE_POINTER G_TYPE_MAKE_FUNDAMENTAL (17) |
#define G_TYPE_RESERVED_BSE_FIRST (32) |
G_TYPE_RESERVED_BSE_FIRST:
First fundamental type number to create a new fundamental type id with G_TYPE_MAKE_FUNDAMENTAL() reserved for BSE.
#define G_TYPE_RESERVED_BSE_LAST (48) |
#define G_TYPE_RESERVED_GLIB_FIRST (22) |
G_TYPE_RESERVED_GLIB_FIRST:
First fundamental type number to create a new fundamental type id with G_TYPE_MAKE_FUNDAMENTAL() reserved for GLib.
#define G_TYPE_RESERVED_GLIB_LAST (31) |
#define G_TYPE_RESERVED_USER_FIRST (49) |
G_TYPE_RESERVED_USER_FIRST:
First available fundamental type number to create new fundamental type id with G_TYPE_MAKE_FUNDAMENTAL().
#define G_TYPE_STRING G_TYPE_MAKE_FUNDAMENTAL (16) |
#define G_TYPE_UCHAR G_TYPE_MAKE_FUNDAMENTAL (4) |
#define G_TYPE_UINT G_TYPE_MAKE_FUNDAMENTAL (7) |
#define G_TYPE_UINT64 G_TYPE_MAKE_FUNDAMENTAL (11) |
#define G_TYPE_ULONG G_TYPE_MAKE_FUNDAMENTAL (9) |
#define G_TYPE_VARIANT G_TYPE_MAKE_FUNDAMENTAL (21) |
G_TYPE_VARIANT:
The fundamental type corresponding to GVariant.
All floating GVariant instances passed through the GType system are consumed.
Note that callbacks in closures, and signal handlers for signals of return type G_TYPE_VARIANT, must never return floating variants.
Note: GLib 2.24 did include a boxed type with this name. It was replaced with this fundamental type in 2.26.
Since: 2.26
#define GPOINTER_TO_TYPE | ( | p | ) | ((GType) (guintptr) (p)) GOBJECT_AVAILABLE_MACRO_IN_2_80 |
#define GTYPE_TO_POINTER | ( | t | ) | ((gpointer) (guintptr) (t)) GOBJECT_AVAILABLE_MACRO_IN_2_80 |
typedef void(* GBaseFinalizeFunc) (gpointer g_class) |
GBaseFinalizeFunc: @g_class: (type GObject.TypeClass): The GTypeClass structure to finalize
A callback function used by the type system to finalize those portions of a derived types class structure that were setup from the corresponding GBaseInitFunc() function.
Class finalization basically works the inverse way in which class initialization is performed.
See GClassInitFunc() for a discussion of the class initialization process.
typedef void(* GBaseInitFunc) (gpointer g_class) |
GBaseInitFunc: @g_class: (type GObject.TypeClass): The GTypeClass structure to initialize
A callback function used by the type system to do base initialization of the class structures of derived types.
This function is called as part of the initialization process of all derived classes and should reallocate or reset all dynamic class members copied over from the parent class.
For example, class members (such as strings) that are not sufficiently handled by a plain memory copy of the parent class into the derived class have to be altered. See GClassInitFunc() for a discussion of the class initialization process.
GClassFinalizeFunc: @g_class: (type GObject.TypeClass): The GTypeClass structure to finalize @class_data: The @class_data member supplied via the GTypeInfo structure
A callback function used by the type system to finalize a class.
This function is rarely needed, as dynamically allocated class resources should be handled by GBaseInitFunc() and GBaseFinalizeFunc().
Also, specification of a GClassFinalizeFunc() in the GTypeInfo structure of a static type is invalid, because classes of static types will never be finalized (they are artificially kept alive when their reference count drops to zero).
GClassInitFunc: @g_class: (type GObject.TypeClass): The GTypeClass structure to initialize. @class_data: The @class_data member supplied via the GTypeInfo structure.
A callback function used by the type system to initialize the class of a specific type.
This function should initialize all static class members.
The initialization process of a class involves:
Since derived classes are partially initialized through a memory copy of the parent class, the general rule is that GBaseInitFunc() and GBaseFinalizeFunc() should take care of necessary reinitialization and release of those class members that were introduced by the type that specified these GBaseInitFunc()/GBaseFinalizeFunc(). GClassInitFunc() should only care about initializing static class members, while dynamic class members (such as allocated strings or reference counted resources) are better handled by a GBaseInitFunc() for this type, so proper initialization of the dynamic class members is performed for class initialization of derived types as well.
An example may help to correspond the intend of the different class initializers:
|[ typedef struct { GObjectClass parent_class; gint static_integer; gchar *dynamic_string; } TypeAClass; static void type_a_base_class_init (TypeAClass *class) { class->dynamic_string = g_strdup ("some string"); } static void type_a_base_class_finalize (TypeAClass *class) { g_free (class->dynamic_string); } static void type_a_class_init (TypeAClass *class) { class->static_integer = 42; }
typedef struct { TypeAClass parent_class; gfloat static_float; GString *dynamic_gstring; } TypeBClass; static void type_b_base_class_init (TypeBClass *class) { class->dynamic_gstring = g_string_new ("some other string"); } static void type_b_base_class_finalize (TypeBClass *class) { g_string_free (class->dynamic_gstring); } static void type_b_class_init (TypeBClass *class) { class->static_float = 3.14159265358979323846; } ]|
Initialization of TypeBClass will first cause initialization of TypeAClass (derived classes reference their parent classes, see g_type_class_ref() on this).
Initialization of TypeAClass roughly involves zero-initializing its fields, then calling its GBaseInitFunc() type_a_base_class_init() to allocate its dynamic members (dynamic_string), and finally calling its GClassInitFunc() type_a_class_init() to initialize its static members (static_integer). The first step in the initialization process of TypeBClass is then a plain memory copy of the contents of TypeAClass into TypeBClass and zero-initialization of the remaining fields in TypeBClass. The dynamic members of TypeAClass within TypeBClass now need reinitialization which is performed by calling type_a_base_class_init() with an argument of TypeBClass.
After that, the GBaseInitFunc() of TypeBClass, type_b_base_class_init() is called to allocate the dynamic members of TypeBClass (dynamic_gstring), and finally the GClassInitFunc() of TypeBClass, type_b_class_init(), is called to complete the initialization process with the static members (static_float).
Corresponding finalization counter parts to the GBaseInitFunc() functions have to be provided to release allocated resources at class finalization time.
typedef void(* GInstanceInitFunc) (GTypeInstance *instance, gpointer g_class) |
GInstanceInitFunc: @instance: The instance to initialize @g_class: (type GObject.TypeClass): The class of the type the instance is created for
A callback function used by the type system to initialize a new instance of a type.
This function initializes all instance members and allocates any resources required by it.
Initialization of a derived instance involves calling all its parent types instance initializers, so the class member of the instance is altered during its initialization to always point to the class that belongs to the type the current initializer was introduced for.
The extended members of @instance are guaranteed to have been filled with zeros before this function is called.
GInterfaceFinalizeFunc: @g_iface: (type GObject.TypeInterface): The interface structure to finalize @iface_data: The @interface_data supplied via the GInterfaceInfo structure
A callback function used by the type system to finalize an interface.
This function should destroy any internal data and release any resources allocated by the corresponding GInterfaceInitFunc() function.
typedef struct _GInterfaceInfo GInterfaceInfo |
GInterfaceInitFunc: @g_iface: (type GObject.TypeInterface): The interface structure to initialize @iface_data: The @interface_data supplied via the GInterfaceInfo structure
A callback function used by the type system to initialize a new interface.
This function should initialize all internal data and* allocate any resources required by the interface.
The members of @iface_data are guaranteed to have been filled with zeros before this function is called.
typedef struct _GTypeClass GTypeClass |
typedef gboolean(* GTypeClassCacheFunc) (gpointer cache_data, GTypeClass *g_class) |
GTypeClassCacheFunc: @cache_data: data that was given to the g_type_add_class_cache_func() call @g_class: (type GObject.TypeClass): The GTypeClass structure which is unreferenced
A callback function which is called when the reference count of a class drops to zero.
It may use g_type_class_ref() to prevent the class from being freed. You should not call g_type_class_unref() from a GTypeClassCacheFunc function to prevent infinite recursion, use g_type_class_unref_uncached() instead.
The functions have to check the class id passed in to figure whether they actually want to cache the class of this type, since all classes are routed through the same GTypeClassCacheFunc chain.
Returns: TRUE to stop further #GTypeClassCacheFuncs from being called, FALSE to continue
typedef union _GTypeCValue GTypeCValue |
typedef struct _GTypeFundamentalInfo GTypeFundamentalInfo |
typedef struct _GTypeInfo GTypeInfo |
typedef struct _GTypeInstance GTypeInstance |
typedef struct _GTypeInterface GTypeInterface |
GTypeInterfaceCheckFunc: @check_data: data passed to g_type_add_interface_check() @g_iface: (type GObject.TypeInterface): the interface that has been initialized
A callback called after an interface vtable is initialized.
See g_type_add_interface_check().
Since: 2.4
typedef struct _GTypePlugin GTypePlugin |
typedef struct _GTypeQuery GTypeQuery |
typedef struct _GTypeValueTable GTypeValueTable |
enum GTypeDebugFlags |
GTypeDebugFlags: @G_TYPE_DEBUG_NONE: Print no messages @G_TYPE_DEBUG_OBJECTS: Print messages about object bookkeeping @G_TYPE_DEBUG_SIGNALS: Print messages about signal emissions @G_TYPE_DEBUG_MASK: Mask covering all debug flags @G_TYPE_DEBUG_INSTANCE_COUNT: Keep a count of instances of each type
These flags used to be passed to g_type_init_with_debug_flags() which is now deprecated.
If you need to enable debugging features, use the GOBJECT_DEBUG
environment variable.
Deprecated: 2.36: g_type_init() is now done automatically
Enumerator | |
---|---|
G_TYPE_DEBUG_NONE | |
G_TYPE_DEBUG_OBJECTS | |
G_TYPE_DEBUG_SIGNALS | |
G_TYPE_DEBUG_INSTANCE_COUNT | |
G_TYPE_DEBUG_MASK |
Definition at line 724 of file gtype.h.
enum GTypeFlags |
GTypeFlags: @G_TYPE_FLAG_NONE: No special flags. Since: 2.74 @G_TYPE_FLAG_ABSTRACT: Indicates an abstract type. No instances can be created for an abstract type @G_TYPE_FLAG_VALUE_ABSTRACT: Indicates an abstract value type, i.e. a type that introduces a value table, but can't be used for g_value_init() @G_TYPE_FLAG_FINAL: Indicates a final type. A final type is a non-derivable leaf node in a deep derivable type hierarchy tree. Since: 2.70 @G_TYPE_FLAG_DEPRECATED: The type is deprecated and may be removed in a future version. A warning will be emitted if it is instantiated while running with G_ENABLE_DIAGNOSTIC=1
. Since 2.76
Bit masks used to check or determine characteristics of a type.
Enumerator | |
---|---|
GOBJECT_AVAILABLE_ENUMERATOR_IN_2_74 | |
G_TYPE_FLAG_ABSTRACT | |
G_TYPE_FLAG_VALUE_ABSTRACT | |
GOBJECT_AVAILABLE_ENUMERATOR_IN_2_70 | |
GOBJECT_AVAILABLE_ENUMERATOR_IN_2_76 |
Definition at line 1083 of file gtype.h.
GTypeFundamentalFlags: @G_TYPE_FLAG_CLASSED: Indicates a classed type @G_TYPE_FLAG_INSTANTIATABLE: Indicates an instantiatable type (implies classed) @G_TYPE_FLAG_DERIVABLE: Indicates a flat derivable type @G_TYPE_FLAG_DEEP_DERIVABLE: Indicates a deep derivable type (implies derivable)
Bit masks used to check or determine specific characteristics of a fundamental type.
Enumerator | |
---|---|
G_TYPE_FLAG_CLASSED | |
G_TYPE_FLAG_INSTANTIATABLE | |
G_TYPE_FLAG_DERIVABLE | |
G_TYPE_FLAG_DEEP_DERIVABLE |
Definition at line 1058 of file gtype.h.
GOBJECT_AVAILABLE_IN_ALL void g_type_add_class_cache_func | ( | gpointer | cache_data, |
GTypeClassCacheFunc | cache_func ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_add_class_private | ( | GType | class_type, |
gsize | private_size ) |
GOBJECT_AVAILABLE_IN_2_38 gint g_type_add_instance_private | ( | GType | class_type, |
gsize | private_size ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_add_interface_check | ( | gpointer | check_data, |
GTypeInterfaceCheckFunc | check_func ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_add_interface_dynamic | ( | GType | instance_type, |
GType | interface_type, | ||
GTypePlugin * | plugin ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_add_interface_static | ( | GType | instance_type, |
GType | interface_type, | ||
const GInterfaceInfo * | info ) |
GOBJECT_AVAILABLE_IN_ALL GTypeClass * g_type_check_class_cast | ( | GTypeClass * | g_class, |
GType | is_a_type ) |
GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_class_is_a | ( | GTypeClass * | g_class, |
GType | is_a_type ) |
GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_instance | ( | GTypeInstance * | instance | ) |
GOBJECT_AVAILABLE_IN_ALL GTypeInstance * g_type_check_instance_cast | ( | GTypeInstance * | instance, |
GType | iface_type ) |
GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_instance_is_a | ( | GTypeInstance * | instance, |
GType | iface_type ) |
GOBJECT_AVAILABLE_IN_2_42 gboolean g_type_check_instance_is_fundamentally_a | ( | GTypeInstance * | instance, |
GType | fundamental_type ) |
GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_is_value_type | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_value | ( | const GValue * | value | ) |
GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_value_holds | ( | const GValue * | value, |
GType | type ) |
GOBJECT_AVAILABLE_IN_ALL GType * g_type_children | ( | GType | type, |
guint * | n_children ) |
GOBJECT_DEPRECATED_IN_2_58 void g_type_class_add_private | ( | gpointer | g_class, |
gsize | private_size ) |
GOBJECT_AVAILABLE_IN_2_38 void g_type_class_adjust_private_offset | ( | gpointer | g_class, |
gint * | private_size_or_offset ) |
GOBJECT_AVAILABLE_IN_2_38 gint g_type_class_get_instance_private_offset | ( | gpointer | g_class | ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_get_private | ( | GTypeClass * | klass, |
GType | private_type ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_peek | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_peek_parent | ( | gpointer | g_class | ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_peek_static | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_ref | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_class_unref | ( | gpointer | g_class | ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_class_unref_uncached | ( | gpointer | g_class | ) |
GOBJECT_AVAILABLE_IN_ALL GTypeInstance * g_type_create_instance | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_default_interface_peek | ( | GType | g_type | ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_default_interface_ref | ( | GType | g_type | ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_default_interface_unref | ( | gpointer | g_iface | ) |
GOBJECT_AVAILABLE_IN_ALL guint g_type_depth | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_2_34 void g_type_ensure | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_free_instance | ( | GTypeInstance * | instance | ) |
GOBJECT_AVAILABLE_IN_ALL GType g_type_from_name | ( | const gchar * | name | ) |
GOBJECT_AVAILABLE_IN_ALL GType g_type_fundamental | ( | GType | type_id | ) |
GOBJECT_AVAILABLE_IN_ALL GType g_type_fundamental_next | ( | void | ) |
GOBJECT_AVAILABLE_IN_2_44 int g_type_get_instance_count | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL GTypePlugin * g_type_get_plugin | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_get_qdata | ( | GType | type, |
GQuark | quark ) |
GOBJECT_AVAILABLE_IN_2_36 guint g_type_get_type_registration_serial | ( | void | ) |
G_GNUC_BEGIN_IGNORE_DEPRECATIONS GOBJECT_DEPRECATED_IN_2_36 void g_type_init | ( | void | ) |
GOBJECT_DEPRECATED_IN_2_36 void g_type_init_with_debug_flags | ( | GTypeDebugFlags | debug_flags | ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_instance_get_private | ( | GTypeInstance * | instance, |
GType | private_type ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_interface_add_prerequisite | ( | GType | interface_type, |
GType | prerequisite_type ) |
GOBJECT_AVAILABLE_IN_ALL GTypePlugin * g_type_interface_get_plugin | ( | GType | instance_type, |
GType | interface_type ) |
GOBJECT_AVAILABLE_IN_2_68 GType g_type_interface_instantiatable_prerequisite | ( | GType | interface_type | ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_interface_peek | ( | gpointer | instance_class, |
GType | iface_type ) |
GOBJECT_AVAILABLE_IN_ALL gpointer g_type_interface_peek_parent | ( | gpointer | g_iface | ) |
GOBJECT_AVAILABLE_IN_ALL GType * g_type_interface_prerequisites | ( | GType | interface_type, |
guint * | n_prerequisites ) |
GOBJECT_AVAILABLE_IN_ALL GType * g_type_interfaces | ( | GType | type, |
guint * | n_interfaces ) |
GOBJECT_AVAILABLE_IN_ALL gboolean g_type_is_a | ( | GType | type, |
GType | is_a_type ) |
G_GNUC_END_IGNORE_DEPRECATIONS GOBJECT_AVAILABLE_IN_ALL const gchar * g_type_name | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL const gchar * g_type_name_from_class | ( | GTypeClass * | g_class | ) |
GOBJECT_AVAILABLE_IN_ALL const gchar * g_type_name_from_instance | ( | GTypeInstance * | instance | ) |
GOBJECT_AVAILABLE_IN_ALL GType g_type_next_base | ( | GType | leaf_type, |
GType | root_type ) |
GOBJECT_AVAILABLE_IN_ALL GType g_type_parent | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL GQuark g_type_qname | ( | GType | type | ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_query | ( | GType | type, |
GTypeQuery * | query ) |
GOBJECT_AVAILABLE_IN_ALL GType g_type_register_dynamic | ( | GType | parent_type, |
const gchar * | type_name, | ||
GTypePlugin * | plugin, | ||
GTypeFlags | flags ) |
GOBJECT_AVAILABLE_IN_ALL GType g_type_register_fundamental | ( | GType | type_id, |
const gchar * | type_name, | ||
const GTypeInfo * | info, | ||
const GTypeFundamentalInfo * | finfo, | ||
GTypeFlags | flags ) |
G_GNUC_END_IGNORE_DEPRECATIONS GOBJECT_AVAILABLE_IN_ALL GType g_type_register_static | ( | GType | parent_type, |
const gchar * | type_name, | ||
const GTypeInfo * | info, | ||
GTypeFlags | flags ) |
GOBJECT_AVAILABLE_IN_ALL GType g_type_register_static_simple | ( | GType | parent_type, |
const gchar * | type_name, | ||
guint | class_size, | ||
GClassInitFunc | class_init, | ||
guint | instance_size, | ||
GInstanceInitFunc | instance_init, | ||
GTypeFlags | flags ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_remove_class_cache_func | ( | gpointer | cache_data, |
GTypeClassCacheFunc | cache_func ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_remove_interface_check | ( | gpointer | check_data, |
GTypeInterfaceCheckFunc | check_func ) |
GOBJECT_AVAILABLE_IN_ALL void g_type_set_qdata | ( | GType | type, |
GQuark | quark, | ||
gpointer | data ) |
GOBJECT_AVAILABLE_IN_ALL gboolean g_type_test_flags | ( | GType | type, |
guint | flags ) |
GOBJECT_AVAILABLE_IN_ALL GTypeValueTable * g_type_value_table_peek | ( | GType | type | ) |
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef gchar *(* GTypeValueCollectFunc) (GValue *value, guint n_collect_values, GTypeCValue *collect_values, guint collect_flags) | ( | GValue * | value, |
guint | n_collect_values, | ||
GTypeCValue * | collect_values, | ||
guint | collect_flags ) |
GTypeValueCollectFunc: @value: the value to initialize @n_collect_values: the number of collected values @collect_values: (array length=n_collect_values): the collected values @collect_flags: optional flags
This function is responsible for converting the values collected from a variadic argument list into contents suitable for storage in a GValue.
This function should setup @value similar to GTypeValueInitFunc; e.g. for a string value that does not allow NULL
pointers, it needs to either emit an error, or do an implicit conversion by storing an empty string.
The @value passed in to this function has a zero-filled data array, so just like for GTypeValueInitFunc it is guaranteed to not contain any old contents that might need freeing.
The @n_collect_values argument is the string length of the collect_format
field of GTypeValueTable, and collect_values
is an array of GTypeCValue with length of @n_collect_values, containing the collected values according to collect_format
.
The @collect_flags argument provided as a hint by the caller. It may contain the flag G_VALUE_NOCOPY_CONTENTS indicating that the collected value contents may be considered ‘static’ for the duration of the @value lifetime. Thus an extra copy of the contents stored in @collect_values is not required for assignment to @value.
For our above string example, we continue with:
|[ if (!collect_values[0].v_pointer) value->data[0].v_pointer = g_strdup (""); else if (collect_flags & G_VALUE_NOCOPY_CONTENTS) { value->data[0].v_pointer = collect_values[0].v_pointer; // keep a flag for the value_free() implementation to not free this string value->data[1].v_uint = G_VALUE_NOCOPY_CONTENTS; } else value->data[0].v_pointer = g_strdup (collect_values[0].v_pointer); return NULL; ]|
It should be noted, that it is generally a bad idea to follow the G_VALUE_NOCOPY_CONTENTS hint for reference counted types. Due to reentrancy requirements and reference count assertions performed by the signal emission code, reference counts should always be incremented for reference counted contents stored in the value->data
array. To deviate from our string example for a moment, and taking a look at an exemplary implementation for GTypeValueTable.collect_value()
of GObject
:
|[ GObject *object = G_OBJECT (collect_values[0].v_pointer); g_return_val_if_fail (object != NULL, g_strdup_printf ("Object %p passed as invalid NULL pointer", object)); // never honour G_VALUE_NOCOPY_CONTENTS for ref-counted types value->data[0].v_pointer = g_object_ref (object); return NULL; ]|
The reference count for valid objects is always incremented, regardless of collect_flags
. For invalid objects, the example returns a newly allocated string without altering value
.
Upon success, collect_value()
needs to return NULL
. If, however, an error condition occurred, collect_value()
should return a newly allocated string containing an error diagnostic.
The calling code makes no assumptions about the value
contents being valid upon error returns, value
is simply thrown away without further freeing. As such, it is a good idea to not allocate GValue
contents prior to returning an error; however, collect_values()
is not obliged to return a correctly setup @value for error returns, simply because any non-NULL
return is considered a fatal programming error, and further program behaviour is undefined.
Returns: (transfer full) (nullable): NULL
on success, otherwise a newly allocated error string on failure
Since: 2.78
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef void(* GTypeValueCopyFunc) (const GValue *src_value, GValue *dest_value) | ( | const GValue * | src_value, |
GValue * | dest_value ) |
GTypeValueCopyFunc: @src_value: the value to copy @dest_value: (out): the location of the copy
Copies the content of a GValue into another.
The @dest_value is a GValue with zero-filled data section and @src_value is a properly initialized GValue of same type, or derived type.
The purpose of this function is to copy the contents of @src_value into @dest_value in a way, that even after @src_value has been freed, the contents of @dest_value remain valid. String type example:
|[ dest_value->data[0].v_pointer = g_strdup (src_value->data[0].v_pointer); ]|
Since: 2.78
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef void(* GTypeValueFreeFunc) (GValue *value) | ( | GValue * | value | ) |
GTypeValueFreeFunc: @value: the value to free
Frees any old contents that might be left in the value->data
array of the given value.
No resources may remain allocated through the GValue contents after this function returns. E.g. for our above string type:
|[ // only free strings without a specific flag for static storage if (!(value->data[1].v_uint & G_VALUE_NOCOPY_CONTENTS)) g_free (value->data[0].v_pointer); ]|
Since: 2.78
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef void(* GTypeValueInitFunc) (GValue *value) | ( | GValue * | value | ) |
GTypeValueInitFunc: @value: the value to initialize
Initializes the value contents by setting the fields of the value->data
array.
The data array of the GValue passed into this function was zero-filled with memset()
, so no care has to be taken to free any old contents. For example, in the case of a string value that may never be NULL, the implementation might look like:
|[ value->data[0].v_pointer = g_strdup (""); ]|
Since: 2.78
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef gchar *(* GTypeValueLCopyFunc) (const GValue *value, guint n_collect_values, GTypeCValue *collect_values, guint collect_flags) | ( | const GValue * | value, |
guint | n_collect_values, | ||
GTypeCValue * | collect_values, | ||
guint | collect_flags ) |
GTypeValueLCopyFunc: @value: the value to lcopy @n_collect_values: the number of collected values @collect_values: (array length=n_collect_values): the collected locations for storage @collect_flags: optional flags
This function is responsible for storing the value
contents into arguments passed through a variadic argument list which got collected into collect_values
according to lcopy_format
.
The n_collect_values
argument equals the string length of lcopy_format
, and collect_flags
may contain G_VALUE_NOCOPY_CONTENTS.
In contrast to GTypeValueCollectFunc, this function is obliged to always properly support G_VALUE_NOCOPY_CONTENTS.
Similar to GTypeValueCollectFunc the function may prematurely abort by returning a newly allocated string describing an error condition. To complete the string example:
|[ gchar **string_p = collect_values[0].v_pointer; g_return_val_if_fail (string_p != NULL, g_strdup ("string location passed as NULL"));
if (collect_flags & G_VALUE_NOCOPY_CONTENTS) *string_p = value->data[0].v_pointer; else *string_p = g_strdup (value->data[0].v_pointer); ]|
And an illustrative version of this function for reference-counted types:
|[ GObject **object_p = collect_values[0].v_pointer; g_return_val_if_fail (object_p != NULL, g_strdup ("object location passed as NULL"));
if (value->data[0].v_pointer == NULL) *object_p = NULL; else if (collect_flags & G_VALUE_NOCOPY_CONTENTS) // always honour *object_p = value->data[0].v_pointer; else *object_p = g_object_ref (value->data[0].v_pointer);
return NULL; ]|
Returns: (transfer full) (nullable): NULL
on success, otherwise a newly allocated error string on failure
Since: 2.78
GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef gpointer(* GTypeValuePeekPointerFunc) (const GValue *value) | ( | const GValue * | value | ) |
GTypeValuePeekPointerFunc: @value: the value to peek
If the value contents fit into a pointer, such as objects or strings, return this pointer, so the caller can peek at the current contents.
To extend on our above string example:
|[ return value->data[0].v_pointer; ]|
Returns: (transfer none): a pointer to the value contents
Since: 2.78